Continental Launches New Truck Tyre Line Aimed at CO2 Reduction

Continental Launches New Truck Tyre Line Aimed at CO2 Reduction

Continental’s new truck tyre line, The Conti EcoRegional family, is said to enable fleet operators to significantly increase the efficiency of their vehicles in regional transport. The Conti EcoRegional HS3 and HD3 are built to reduce CO2 emissions thanks to a new manufacturing process in combination of an innovative tread design for the steering axle and a rubber compound that is optimized for rolling resistance for the drive axle. Continental claims that during this process, no sacrifices have been made in terms of the other significant tire properties such as mileage, robustness and traction.

Stretching the limits of tyre technology
The Conti EcoRegional HS3, which was produced using the new ‘Conti Diamond’ technique production process, features an optimised tread surface pattern in the ground contact area with a modified tread groove geometry, reduced sipe width, and W-tread groove technology for particularly even abrasion. A highly stable configuration of the circumferential longitudinal tread grooves enables greater mileage while also reducing fuel consumption. The use of sipes in the newly designed tread ribs provides additional grip edges that are important for the traction characteristics. The Conti EcoRegional HD3 runs with the tried-and-tested tread concept of the Conti Hybrid Gen 3 line, but uses a new, innovative tread compound in the form of Conti InterLock Technology. It enables a level of low rolling resistance with the same mileage, especially in regional and highway applications.

Continental Ecoregional HS3
Continental Ecoregional HD3

The design of the tread with ‘cap’ (responsible for adhesion, abrasion resistance, and directional stability) and ‘base’ (rolling resistance and damping) allows the individual zones to be optimized for specific tasks, thereby helping to resolve the trade-off. In both products, Conti EcoRegional HS3 and HD3, base compounds optimised for rolling resistance are used. In addition, rubber compounds optimised for rolling resistance are used in the casing.

Meeting the toughest CO2 regulations
The vehicle energy consumption calculation tool (VECTO), which was introduced by the European Commission, is intended to ensure that the ambitious European targets for CO2 reduction are met. In order to meet the objectives of the Paris Climate Change Agreement, the European Commission adopted the first carbon dioxide emissions regulation for newly registered heavy commercial vehicles (EU Regulation 2019/1242) in 2019. This calls for a reduction in the average CO2 emissions for new heavy commercial vehicles by 15 percent by 2025 or 30 percent by 2030, compared in each case to the reference year July 2019 to June 2020. This regulation currently applies to 4x2 and 6x2 trucks with a permissible gross vehicle weight of more than 16 metric tons, with a future expansion currently being discussed by the European Commission.

Screenshot of the microsite. Click here to visit 

Continental has also launched a microsite containing useful information about the latest CO2 emissions regulation for heavy goods vehicles and the simulation tool for trucks called VECTO. Continental aims to provide fleet managers with comprehensive information about the new regulation and its implications for them, given that tires significantly influence fuel consumption and by that the CO₂ emissions generated by a vehicle.

The microsite contains-
-Videos explaining how the VECTO simulation tool works and what exactly is calculated for the HDVs (also available on YouTube) as well as a video about why industry and society need to act now.
-Information about business effects for fleet operators, focusing on fuel efficiency and greater transparency with regard to the purchase of a truck.
-Comprehensive infographic about the new regulation, with facts and figures on how the VECTO tool performs its calculations, which vehicles are affected, the potential of tires to reduce fuel consumption and fleet operating costs, plus other parameters to reduce CO₂ emissions.

Constantin Batsch, Head of Truck Tires Replacement at Continental’s business region Europe, Middle East and Africa (EMEA) said, “From our talks with customers we see that there is a lot of interest from fleet managers all over Europe. We know that fuel consumption and thereby CO₂ emissions will not only become more important when buying a new truck, but also when replacing tires. So, we want to provide fleet operators with important information on how the new CO₂ regulation and the resulting changes for tires affect their business and how they can make best use of it. We see ourselves as service consultants, especially with regard to finding the right tire, tire management and how this helps reduce overall operating costs and CO₂ emissions.”

The European Parliament states that 25 percent of the European Union’s CO2 emissions from transport are generated by heavy-duty vehicles. If truck manufacturers fail to comply with the new regulations, they will incur penalty payments for each vehicle. Further regulations that could affect fleets directly are currently under discussion. Tires impact on up to 40 percent of fleet operating costs because they have a significant influence on fuel consumption (30 percent) as well as on repairs and maintenance (5 percent) and actual tire costs (5 percent).

Continental manufactures the Conti EcoRegional product line in the following dimensions, whereby dimensions 295/80 R 22.5, 315/70 R 22.5 and 385/65 R 22.5 are now offered with the highest-permissible load index as standard:

 

Fornnax Launches World’s Biggest Secondary Shredder

Fornnax Launches World’s Biggest Secondary Shredder

Fornnax Technology Pvt Ltd has introduced the R-MAX3300, a new secondary shredder presented as the largest in its category. The official launch occurred on 14 October 2025 at the prominent IFAT India environmental technology exhibition in Mumbai. The unveiling ceremony was a significant industry event, attended by numerous leaders from the cement and waste management sectors. Key figures present included executives from GEPIL India, Zigma Global, Prism Johnson Ltd, Shree Cement Ltd and Mangalam Cement Ltd.

This shredder is positioned as a major technological advancement for India's recycling and waste processing infrastructure. It is designed to provide a powerful solution for Cement Alternative Fuel and Resource plants as well as waste-to-energy facilities. While the established R Series shredders are known for processing high-density materials such as tyres and cables, the R-MAX3300 is specifically engineered for low-density waste streams. These targeted materials include Municipal Solid Waste, Commercial and Industrial waste, Construction and Demolition debris, bulky items, legacy waste dumps and wood waste.

The machine integrates advanced shredding technology to efficiently produce Refuse Derived Fuel and Solid Recovered Fuel, achieving an optimal output particle size between 30 and 50 millimetres. Its construction emphasises durability, operational versatility and high performance to meet the demands of large-scale industrial applications requiring consistent fuel quality.

The R-MAX3300 is built for high-volume processing of pre-shredded or coarse materials. Its applications are expected to be crucial in producing solid recovered fuel, preparing waste for composting and reducing waste volume for more cost-effective transportation. The shredder is anticipated to be a key asset in Integrated Waste Management Projects and bio-mining operations across India and international markets.

Jignesh Kundaria, Director and CEO, Fornnax Technology, said, “The R-MAX3300 represents a monumental leap forward in our vision to become a global leader by 2030 in recycling technology through innovation. With the rising challenges of waste management in India and globally, this machine is not just a product; it’s a powerful tool for change. We engineered it to handle the most difficult waste streams with unparalleled efficiency, turning what was once considered unusable waste into a valuable resource. It directly addresses the urgent demand for effective, large-scale shredding technology that can support cement kilns and waste-to-energy facilities in achieving the desired output. Our commitment goes beyond just selling machinery; it's about empowering our customers to achieve lasting efficiency, sustainability and growth. We see ourselves as a trusted partner who stands beside them at every step – from technology deployment to ongoing support, ensuring they can rely on Fornnax not only for performance but also for consistency, dependability and long-term value.”

Siemens And rFpro Enhance Tyre-Road Simulation Technology

Siemens And rFpro Enhance Tyre-Road Simulation Technology

A new collaborative development from rFpro and Siemens Digital Industries Software (Siemens) introduces a significant advancement in simulation technology. This innovation seamlessly connects Siemens' Simcenter Tire software with rFpro's TerrainServer platform, which creates highly precise, millimetre-accurate digital replicas of real-world road surfaces. Through this integration, the sophisticated MF-Tyre and MF-Swift models within Simcenter can directly access and process the detailed terrain data. This allows for the calculation of highly realistic tyre forces and moments, which is a critical factor for virtual testing in both the automotive and motorsport industries.

The partnership was built on ensuring the solution's reliability across diverse applications, from desktop engineering to cloud-based and real-time simulator environments. This development reinforces rFpro's commitment to an open and agnostic simulation platform, providing users with the flexibility to select their preferred models and tools. This strategy of integrating best-in-class third-party technologies protects customer investments and increases their return, as digital assets can be utilised across different departments with varying modelling requirements.

The combined power of TerrainServer's high-fidelity road models and Simcenter Tire's advanced modelling enables engineers to conduct in-depth evaluations of vehicle dynamics, including handling, ride quality and grip. Performance can be assessed objectively through data and subjectively using driver-in-the-loop simulators. This comprehensive approach allows for a more informed development process, leading to better-validated designs before physical prototypes are built, thereby saving substantial time and cost. The new interface is now commercially available and is already being widely adopted by OEMs and Tier 1 suppliers globally for programmes focused on ride comfort and vehicle dynamics.

Nick Harrison, Development Director, rFpro, said, “We aim to be the most open simulation environment on the market and this integration is another key example of this. Our platform-agnostic approach means engineers can pick and choose the best tools for the job. They have the ability to combine specialised technologies from different vendors to create the most effective simulation solution for their particular development challenge.”

Willem Versteden, Senior Technical Product Manager, Siemens Digital Industries Software, said, “Tyre behaviour depends heavily on the surface it’s interacting with. By integrating our Simcenter Tire software with rFpro’s TerrainServer, engineers can now simulate that interaction with a much higher level of detail. It’s a valuable step forward for users demanding greater accuracy in virtual vehicle development.”

Continental and nobilia Forge Future Of Living With Smart Kitchen Concept

Continental and nobilia Forge Future Of Living With Smart Kitchen Concept

A groundbreaking collaboration between technology giant Continental and kitchen manufacturer nobilia is presenting a new vision for the kitchen, transforming it from a utilitarian space into an intelligent and responsive living environment. This joint innovation project, set to debut at nobilia’s international exhibition in Verl, harnesses the material science expertise of Continental’s ContiTech group, drawing directly from its advanced work in automotive interiors.

The concept, titled ‘Evolution of Senses’, showcases how functional materials can redefine everyday experiences through comfort, safety and seamless design. The core of this innovation lies in revolutionary translucent surfaces. These specialised materials are light-permeable and serve as a host for printed electronics, enabling an array of hidden functions. This technology allows a kitchen countertop to discreetly incorporate wireless smartphone charging, create specific heating or cooling zones to keep food and drinks at their ideal temperature and feature touch-sensitive control panels. All these elements remain completely invisible when not in use, preserving a clean aesthetic. This principle of surface technology is also demonstrated in a kitchen niche, where a screen is hidden behind a translucent film with a wood-like finish, only appearing when activated.

The commitment to modern living extends to sustainability, with the use of durable and resource-efficient materials. The chairs, for instance, are upholstered in an artificial leather that is composed of over 90 percent bio-based and renewable raw materials, including organically grown cotton.

Further enhancing the kitchen's intelligence are smart AI features, engineered by AUMOVIO Engineering Solutions. Adapted from Continental's automotive technology, these systems can recognise food items, offer recipe recommendations and provide nutritional insights. They also contribute to family safety by issuing alerts for potential hazards like boiling water or objects that might be dangerous for children.

While some of these technologies are production-ready and others are still in the prototype stage, they collectively offer a concrete and exciting preview of the future, where the home environment is both intuitively connected and sustainably crafted.

Ralf Imbery, Head of Design, Marketing and Strategy for Continental’s global surface materials business, said, “For many decades, our materials and technologies have shaped modern living spaces – from vehicle interiors to home furniture. With this concept kitchen, we’re showing how our expertise can be transferred to new requirements: for greater functionality, user-oriented design and technology in everyday life. For us, cooperation projects of this kind are an important strategic tool that allow us to test innovations at an early stage and, together with partners, develop new perspectives for future living environments.”

Florian Degenhardt, Head of Innovation, nobilia, said, “The collaboration with Continental is a real game-changer. It enables us to create intuitive surfaces that respond to the user while at the same time preserving the elegant design of modern kitchens.”

NASA Launches USD 155,000 Challenge for Revolutionary Lunar Rover Wheels

NASA Launches USD 155,000 Challenge for Revolutionary Lunar Rover Wheels

NASA has launched a three-phase competition offering USD 155,000 in prizes to develop next-generation wheels for lunar rovers, as the US space agency prepares for sustained exploration missions to the Moon’s surface.

The “Rock and Roll with NASA Challenge” seeks lightweight, durable wheel designs capable of traversing the Moon’s harsh terrain of razor-sharp regolith whilst maintaining performance in extreme temperature variations and carrying substantial cargo loads at higher speeds.

The competition addresses critical mobility challenges facing future lunar missions, where traditional rover wheels have struggled with the Moon’s abrasive surface materials and temperature extremes that can plummet to minus 173 degrees Celsius during lunar nights.

“The next era of lunar exploration demands a new kind of wheel – one that can sprint across razor-sharp regolith, shrug off extremely cold nights, and keep a rover rolling day after lunar day,” NASA stated in announcing the challenge.

The programme unfolds across three distinct phases. Phase 1, which opened on 28 August and runs until 4 November 2025, will reward the best conceptual designs and analyses. Phase 2, scheduled for January through April 2026, will fund prototype development. The final phase in May-June 2026 will test leading designs through live obstacle courses simulating lunar conditions.

For the concluding phase, NASA will deploy MicroChariot, a 45-kilogram test rover, to evaluate top-performing wheel designs at the Johnson Space Centre Rockyard facility in Houston, Texas. The testing ground will simulate the challenging lunar terrain that future missions must navigate.

The competition remains open to diverse participants, from university student teams and independent inventors to established aerospace companies, reflecting NASA’s broader strategy of engaging private sector innovation for space exploration technologies.

NASA mobility engineers will provide ongoing feedback throughout the competition phases, offering participants insights from the agency’s extensive experience in planetary rover operations, including successful missions to Mars.

The challenge comes as NASA intensifies preparations for the Artemis programme, which aims to establish a sustained human presence on the Moon and serve as a stepping stone for eventual Mars exploration missions.

Current lunar rover designs have faced limitations in speed, cargo capacity, and durability when operating across the Moon’s challenging surface conditions, creating demand for breakthrough mobility solutions that can support extended surface operations.

The competition timeline positions Phase 2 prototype funding to commence in January 2026, allowing successful Phase 1 participants several months to refine their concepts before advancing to hardware development.