Motorcycle tyre design

Hyundai Registers Double-Digit Sales Growth in January 2021

When we discuss about a motorcycle's performance, we generally speak about its engine power, torque, top speed, how fast it can accelerate, vehicle sound etc. Nevertheless, all these are meaningless if a driver cannot control the machine and/or is not comfortable while riding. There comes the importance of tyres. Tyres are the most crucial parts of a vehicle suspension system.  Tyres are the only component in a motorcycle that constantly stays in contact with the road. The part of tread which is in contact with road surface is called ‘contact patch’ & Is about half the size of a post card.  The overall suspension system (including tyres) ensures the right contact between the tires and the road surface at every stage of driving, thereby ensuring stability and good handling of the vehicle.

As tyres are the only contact with the road, they are responsible for multiple functions, such as –

Transfer the engine power to the road- meeting the demands of acceleration and braking

  Provides right hold (grip) on different surfaces like dry, wet, snow, loose soils etc.

  Helps the rider to steer the vehicle by responding to the handle movements

  Carry the weight of the vehicle & rider

 Ensuring the comfort of the rider by absorbing and dampening shock

Apart from the above aspects, tyres play a vital role in vehicle aesthetics, safety, fuel efficiency etc. These and several other challenges make Motorcycle tyre design a very interesting and responsible subject.

Apart from being a crucial part of a vehicle suspension system, tyres are the only contact between vehicle & road. Motorcycle vehicle dynamics and control characteristics are highly influenced by the tyre design. It is therefore highly imperative for a vehicle chase/suspension designer & tyre designer to work together in tandem. This will ensure that the part designs will complement each other and deliver the characteristic target performance of a motorcycle. A robust interaction mechanism between the R&Ds of OEM [Original Equipment Manufactures] and tyre manufactures is a growing necessity to cater to the ever‐increasing demands of performance entrusted upon the tyre of today. In case of tyres getting designed exclusively for aftermarket, a tyre designer work closely with the vehicle dynamics team to ensure that the retrofit design delivers desired target performance of the vehicle

Some of the major steps involved in motorcycle tyre design are

 Product planning & Tyre “Size” finalization: During this stage a vehicle designer & tyre designer jointly review the vehicle performance requirements and decides the parameters specific to tyre performance. This includes:

Defying the application /terrine: Depending on application, 2 wheelers maybe broadly classified as Sport, Cruiser, Choppers, Touring, scooter, Step through, Sport touring, Enduro etc. Different OEM’s follow different terminologies, but a for a tyre designer to understand the final use by the user is of utmost importance. Demands from a tyre varies with each vehicle category, for example, for a cruiser the tyre is designed to be robust so as to hold up the weight of such heavy bikes and deliver long tyre life, whereas for a Sport touring /super sport bike, tyres are  designed to deliver quick and precise handling with superior grip. These tires are lighter and made by using softer compounds for Superior grip.

Selection of Bias /Bias belted / Radial:   At this juncture, I am not going to delve deeper into a detailed comparison of these constructions – however, it is important to acknowledge that both these construction types have their respective advantages and disadvantages. Each of these constructions has few specific applications where one performs better than the other. The selection of construction type mainly depends on vehicle category (application), vehicle Speed, load on the tyre, stability requirements, handling requirements, etc. for example Bias tyres are used in medium speed but heavy weight vehicles owing to their sturdy sidewalls, whereas Radial tyres are the ideal choice for high speed , vehicles because of their superior dimensional stability.

Selection of Tube type Vs Tubeless Functionally both types of tyres have a proven track record for almost all applications. Hence this choice mainly depends on vehicle Rim design, which is decided by the overall aesthetic demand & application of the motorcycle.For high speed application, tubeless is always preferred

Finalizing the Tyre size / Tyre Geometry:  In general, we may call it as tyre “size” – which includes tyre width, tyre diameter, rim diameter etc. Tyre geometry affects the vehicle dynamics like caster, trail, vehicle Center of gravity [CoG], etc. It also influences the area of contact between vehicle and road surface under different riding conditions & load-carrying capacity of the tyres. Furthermore, tyre size significantly influences vehicle aesthetic as well.  Tyre “size” and vehicle rim size are always interconnected. Decision on one influence the decision on the other.  Usually motorcycles have different front and rear tyre sizes depending on vehicle geometry & load distribution. Tyre “sizes” are decided considering all these parameters & the designers ensures that it follows the standards’ guidelines applicable in target countries.

Tyre tread profile design:

Contrary to the passenger car tyre designs which have almost flat tread surface, motorcycle tires have a U-shaped profile and a contact patch that changes size and shape during cornering. There is a major difference in the way lateral force is built up in passenger car and two wheelers.  In case of passenger car, mechanism of lateral force builds up is due to slip angle whereas in two-wheeler it is mainly because of the camber or the leaning of the vehicle.  Hence you see a flat tread area for passenger car tyre and U-shaped profile for Motorcycle tyre

This U-shaped profile is an important design factor having a direct influence on vehicle performances such as drivability (handling) durability, ride comfort, noise and wear resistance etc.

These tread contours are designed as the arc of one radius, or a combination of arcs with two or more radii. These profiles ensure the required contact patch availability at different lean angles & are controlled by the lean characteristic of the vehicles. It is very critical to balance the performance of front tyre & rear tyre of s motorcycle for precise handling of the vehicle. The contour designs play an important role in front /Rear tyre balance.

Tyre tread pattern design:

Patterns are molded in the tread area of tyre by repeated arrangement of ‘Groves’ or ‘Blocks’ & are generally referred to as “tread pattern”.

Significance of tread pattern

Tread pattern plays a vital role in tyre performance such as:

Optimizing the traction on the riding surface

Eliminating aquaplaning

Optimizing the” Wear” of tread area·  

Ensuring the continuity of tyre performance at different wear Stages [ wear %] of tyre.

Rolling resistance of the tyre

Noise generation

roviding a measurable clue to the owner on time for removal /suitability for continuous usage. etc.

Tread patterns not only helps in achieving the target performance, but also impart unique look to tyres and enhance aesthetics

Tyre patterns are broadly classified into 4 Major headings

  • Rib patterns
  • Directional
  • Block [ Knobby]
  • Slick tyres [Pattern less]

Selection of which group of patterns is mainly controlled by the terrain of application, e.g. Directional patterns are preferred in paved roads and knobby pattern ae mainly used on off-road applications. Pattern less tyres are normally used in racing track applications to provide maximum traction.  Vehicles are designed to work in a combination of different terrains – similarly, tread patterns also have subgroups– which are optimized to operate in different combination of terrains. E.g. Semi knobby patterns for on – off allocations, High land – minimum grove patterns for Supersport highway applications etc.

Designer alter the direction of the grove, depth of the grove, number of groves, the ratio between Grove area & non grove area [ Land- sea ratio] , shape of the grove, the width of the grove etc. to optimize the performance of tread pattern. These patterns are designed to perform under different dynamic conditions. Nowadays designers seek the help of computer-aided simulations to predict the performance under different loading /riding conditions to optimize the pattern design.

Tyre as an Aesthetic component

The visual appeal of tyre is significant contributor in the overall aesthetics of a motorcycle. Hence in addition to performing all the functional requirements discussed so far, tyres ought to look good too.

The tread pattern should complement the overall styling language of a motorcycle. This attracts the attention of OEM’s vehicle styling studios towards tyre tread designs as well. In fact, most of the new tyre designs are done first at styling studio and then technically optimized by the tyre engineer to guarantee the functionality.

Material design

Tyre is a composite material made of different rubber compounds and reinforcing materials. Right compound and reinforcing material selection are crucial to achieve the target performance of tyre.

  • Reinforcing materials:

Reinforcing materials provides the required strength and stiffness for tyre body [carcass]. This includes “tyre cords” used in tyre body ply & “bead wires” used in bead construction of tyres. Most used tyre cord materials are Nylon 6, Nylon 6-6, Polyester, Aramid, Rayon, Steel, etc.

These materials differ in their chemical composition, tensile strength, elongation properties, impact strength, temperature resistance, rubber adhesion, etc. Tyre engineer must choose the right tyre cords depending on the performance demands of the tyre like load carrying capacity, durability, impact resistance, drivability, speed of operations etc. Cost & availability also are few decisive parameters during selection of reinforcing materials.

Tyre Cord denier, cord style, EPI (Ends Per Inch), angle of cords and number of plies affect the strength of a tyre and are chosen based on engineering, and design criteria.

structural durability of a tyre is Primarily determined by the reinforcing material

  • Rubber compound design

Each part of the tyre must dispense different functions and are thus designed with different rubber compounds like tread compound, sidewall compound, carcass compound, bead wire coat compound, etc.  Though all these compounds have their own importance, but tread compound selection is the most critical, as it has a direct impact on tyre traction, handling, wear performance, durability, rolling resistance, etc.

    • Trends of tread compound design:    

Even though smaller number of components are used in a motorcycle tyre, than as compared with passenger car tyres, but performance challenges involved in compounding are far more complex considering less area of tyre in contact with road. 3 major performance requirements in motorcycle tread compound are (1) Grip (2) Rolling resistance [fuel efficiency] and (3) Tyre life which is generally referred as the magic triangle in tyre rubber compounding. This is due to the contradictory response of these 3 performance characteristics to rubber compounding approach. For example, improvement in Grip normally comes with an increase in rolling resistance with conventional compounding as both are related to energy loss. It is always a challenge for tyre compounder to improve all three performance requirements together and this calls for the incorporation of advanced polymers and fillers.

Performance priorities for tread compound changes based on operating terrain, type of vehicle, etc. e.g. Street two-wheeler tread compound designs primarily focus on high grip and high-speed capabilities, whereas an on-off application tyre require higher cut and chunk resistance tread compound.

Demand for lower rolling resistance tyre is showing a steady increase Year-on-Year. Major divers for this growing demand are Electric vehicle introduction & increased focus on vehicle fuel efficiency, in few segments. Tread compounds are expected to deliver lower rolling resistance, without compromising the Grip – typical “magic triangle” puzzle for any tyre compounding engineer. Tyre industry can address this challenge by usage of new generation materials like SSBR, functionalized SSBR, high molecular

Design for manufacturing

For success of any product – Design & manufacturing sync is a must. While designing, to accommodate all functional requirements, a designer cannot ignore the significance of manufacturing process. Hence every tyre design is optimized to satisfy both functional & manufacturability needs. This if not done properly may result in suboptimal performance of the product,

Product Performance Testing

It’s important to review and verify the product performance before releasing it into the market. There are a set of Indoor & Outdoor tests for performance review. A few of them are listed below,

Indoor tests: High-speed drum test, Endurance test, Rolling resistance test, Force and moment testing, Stiffness test, Footprint etc.

Outdoor tests: Ride and Handling testing (track, off-road, public road etc.], Braking test [wet, dry], tyre wear test etc.

Blend of Engineering & Art

Being an integral part of vehicle suspension system & only contact point with road, a tyre plays significant role in motorcycle performance [safety, drivability etc.]. In addition to these performance parameters, tyres have significant influence on the overall styling of the vehicle. It complements the primary theme of the vehicle. A right blend of engineering and art is essential for a successful tyre design. One cannot substitute the other. Amongst different steps of tyre design like, dimension finalization, tread design & martial design etc. the most critical step is tread design (profile, pattern & compound)

Few areas designers are focusing today to  meet the near/middle future demands are

  • Lowering the rolling resistance – without compromising grip
  • Shortening the time to market.
  • virtual simulation of tyre performance

 

References

  1.  ‘’The pneumonic tyre’’, National Highway Traffic Safety Administration, Feb 2006
  2. T. French, Tyre Technology, Hilger, New York, 1989.
  3. Mechanics of Pneumatic Tires, S. K Clark, ed., University of Michigan, US Department of Transportation, National Highway Traffic Safety Administration, Washington, DC, 20590, 1891.

     4.  Handbook of vehicle-road interaction: vehicle dynamics, suspension design, and road damage / edited by David Cebon. p. cm. - (Advances in engineering), ISBN 9026515545

    5. “Tyre and Vehicle Dynamics” , Hans B. Pacejka,  Professor Emeritus Delft University of Technology, Consultant TNO Automotive Helmond

     The author is General Manager - Product Development,2&3-Wheeler tyres, CEAT Tyres


 

 

Fornnax Launches World’s Biggest Secondary Shredder

Fornnax Launches World’s Biggest Secondary Shredder

Fornnax Technology Pvt Ltd has introduced the R-MAX3300, a new secondary shredder presented as the largest in its category. The official launch occurred on 14 October 2025 at the prominent IFAT India environmental technology exhibition in Mumbai. The unveiling ceremony was a significant industry event, attended by numerous leaders from the cement and waste management sectors. Key figures present included executives from GEPIL India, Zigma Global, Prism Johnson Ltd, Shree Cement Ltd and Mangalam Cement Ltd.

This shredder is positioned as a major technological advancement for India's recycling and waste processing infrastructure. It is designed to provide a powerful solution for Cement Alternative Fuel and Resource plants as well as waste-to-energy facilities. While the established R Series shredders are known for processing high-density materials such as tyres and cables, the R-MAX3300 is specifically engineered for low-density waste streams. These targeted materials include Municipal Solid Waste, Commercial and Industrial waste, Construction and Demolition debris, bulky items, legacy waste dumps and wood waste.

The machine integrates advanced shredding technology to efficiently produce Refuse Derived Fuel and Solid Recovered Fuel, achieving an optimal output particle size between 30 and 50 millimetres. Its construction emphasises durability, operational versatility and high performance to meet the demands of large-scale industrial applications requiring consistent fuel quality.

The R-MAX3300 is built for high-volume processing of pre-shredded or coarse materials. Its applications are expected to be crucial in producing solid recovered fuel, preparing waste for composting and reducing waste volume for more cost-effective transportation. The shredder is anticipated to be a key asset in Integrated Waste Management Projects and bio-mining operations across India and international markets.

Jignesh Kundaria, Director and CEO, Fornnax Technology, said, “The R-MAX3300 represents a monumental leap forward in our vision to become a global leader by 2030 in recycling technology through innovation. With the rising challenges of waste management in India and globally, this machine is not just a product; it’s a powerful tool for change. We engineered it to handle the most difficult waste streams with unparalleled efficiency, turning what was once considered unusable waste into a valuable resource. It directly addresses the urgent demand for effective, large-scale shredding technology that can support cement kilns and waste-to-energy facilities in achieving the desired output. Our commitment goes beyond just selling machinery; it's about empowering our customers to achieve lasting efficiency, sustainability and growth. We see ourselves as a trusted partner who stands beside them at every step – from technology deployment to ongoing support, ensuring they can rely on Fornnax not only for performance but also for consistency, dependability and long-term value.”

Siemens And rFpro Enhance Tyre-Road Simulation Technology

Siemens And rFpro Enhance Tyre-Road Simulation Technology

A new collaborative development from rFpro and Siemens Digital Industries Software (Siemens) introduces a significant advancement in simulation technology. This innovation seamlessly connects Siemens' Simcenter Tire software with rFpro's TerrainServer platform, which creates highly precise, millimetre-accurate digital replicas of real-world road surfaces. Through this integration, the sophisticated MF-Tyre and MF-Swift models within Simcenter can directly access and process the detailed terrain data. This allows for the calculation of highly realistic tyre forces and moments, which is a critical factor for virtual testing in both the automotive and motorsport industries.

The partnership was built on ensuring the solution's reliability across diverse applications, from desktop engineering to cloud-based and real-time simulator environments. This development reinforces rFpro's commitment to an open and agnostic simulation platform, providing users with the flexibility to select their preferred models and tools. This strategy of integrating best-in-class third-party technologies protects customer investments and increases their return, as digital assets can be utilised across different departments with varying modelling requirements.

The combined power of TerrainServer's high-fidelity road models and Simcenter Tire's advanced modelling enables engineers to conduct in-depth evaluations of vehicle dynamics, including handling, ride quality and grip. Performance can be assessed objectively through data and subjectively using driver-in-the-loop simulators. This comprehensive approach allows for a more informed development process, leading to better-validated designs before physical prototypes are built, thereby saving substantial time and cost. The new interface is now commercially available and is already being widely adopted by OEMs and Tier 1 suppliers globally for programmes focused on ride comfort and vehicle dynamics.

Nick Harrison, Development Director, rFpro, said, “We aim to be the most open simulation environment on the market and this integration is another key example of this. Our platform-agnostic approach means engineers can pick and choose the best tools for the job. They have the ability to combine specialised technologies from different vendors to create the most effective simulation solution for their particular development challenge.”

Willem Versteden, Senior Technical Product Manager, Siemens Digital Industries Software, said, “Tyre behaviour depends heavily on the surface it’s interacting with. By integrating our Simcenter Tire software with rFpro’s TerrainServer, engineers can now simulate that interaction with a much higher level of detail. It’s a valuable step forward for users demanding greater accuracy in virtual vehicle development.”

Continental and nobilia Forge Future Of Living With Smart Kitchen Concept

Continental and nobilia Forge Future Of Living With Smart Kitchen Concept

A groundbreaking collaboration between technology giant Continental and kitchen manufacturer nobilia is presenting a new vision for the kitchen, transforming it from a utilitarian space into an intelligent and responsive living environment. This joint innovation project, set to debut at nobilia’s international exhibition in Verl, harnesses the material science expertise of Continental’s ContiTech group, drawing directly from its advanced work in automotive interiors.

The concept, titled ‘Evolution of Senses’, showcases how functional materials can redefine everyday experiences through comfort, safety and seamless design. The core of this innovation lies in revolutionary translucent surfaces. These specialised materials are light-permeable and serve as a host for printed electronics, enabling an array of hidden functions. This technology allows a kitchen countertop to discreetly incorporate wireless smartphone charging, create specific heating or cooling zones to keep food and drinks at their ideal temperature and feature touch-sensitive control panels. All these elements remain completely invisible when not in use, preserving a clean aesthetic. This principle of surface technology is also demonstrated in a kitchen niche, where a screen is hidden behind a translucent film with a wood-like finish, only appearing when activated.

The commitment to modern living extends to sustainability, with the use of durable and resource-efficient materials. The chairs, for instance, are upholstered in an artificial leather that is composed of over 90 percent bio-based and renewable raw materials, including organically grown cotton.

Further enhancing the kitchen's intelligence are smart AI features, engineered by AUMOVIO Engineering Solutions. Adapted from Continental's automotive technology, these systems can recognise food items, offer recipe recommendations and provide nutritional insights. They also contribute to family safety by issuing alerts for potential hazards like boiling water or objects that might be dangerous for children.

While some of these technologies are production-ready and others are still in the prototype stage, they collectively offer a concrete and exciting preview of the future, where the home environment is both intuitively connected and sustainably crafted.

Ralf Imbery, Head of Design, Marketing and Strategy for Continental’s global surface materials business, said, “For many decades, our materials and technologies have shaped modern living spaces – from vehicle interiors to home furniture. With this concept kitchen, we’re showing how our expertise can be transferred to new requirements: for greater functionality, user-oriented design and technology in everyday life. For us, cooperation projects of this kind are an important strategic tool that allow us to test innovations at an early stage and, together with partners, develop new perspectives for future living environments.”

Florian Degenhardt, Head of Innovation, nobilia, said, “The collaboration with Continental is a real game-changer. It enables us to create intuitive surfaces that respond to the user while at the same time preserving the elegant design of modern kitchens.”

NASA Launches USD 155,000 Challenge for Revolutionary Lunar Rover Wheels

NASA Launches USD 155,000 Challenge for Revolutionary Lunar Rover Wheels

NASA has launched a three-phase competition offering USD 155,000 in prizes to develop next-generation wheels for lunar rovers, as the US space agency prepares for sustained exploration missions to the Moon’s surface.

The “Rock and Roll with NASA Challenge” seeks lightweight, durable wheel designs capable of traversing the Moon’s harsh terrain of razor-sharp regolith whilst maintaining performance in extreme temperature variations and carrying substantial cargo loads at higher speeds.

The competition addresses critical mobility challenges facing future lunar missions, where traditional rover wheels have struggled with the Moon’s abrasive surface materials and temperature extremes that can plummet to minus 173 degrees Celsius during lunar nights.

“The next era of lunar exploration demands a new kind of wheel – one that can sprint across razor-sharp regolith, shrug off extremely cold nights, and keep a rover rolling day after lunar day,” NASA stated in announcing the challenge.

The programme unfolds across three distinct phases. Phase 1, which opened on 28 August and runs until 4 November 2025, will reward the best conceptual designs and analyses. Phase 2, scheduled for January through April 2026, will fund prototype development. The final phase in May-June 2026 will test leading designs through live obstacle courses simulating lunar conditions.

For the concluding phase, NASA will deploy MicroChariot, a 45-kilogram test rover, to evaluate top-performing wheel designs at the Johnson Space Centre Rockyard facility in Houston, Texas. The testing ground will simulate the challenging lunar terrain that future missions must navigate.

The competition remains open to diverse participants, from university student teams and independent inventors to established aerospace companies, reflecting NASA’s broader strategy of engaging private sector innovation for space exploration technologies.

NASA mobility engineers will provide ongoing feedback throughout the competition phases, offering participants insights from the agency’s extensive experience in planetary rover operations, including successful missions to Mars.

The challenge comes as NASA intensifies preparations for the Artemis programme, which aims to establish a sustained human presence on the Moon and serve as a stepping stone for eventual Mars exploration missions.

Current lunar rover designs have faced limitations in speed, cargo capacity, and durability when operating across the Moon’s challenging surface conditions, creating demand for breakthrough mobility solutions that can support extended surface operations.

The competition timeline positions Phase 2 prototype funding to commence in January 2026, allowing successful Phase 1 participants several months to refine their concepts before advancing to hardware development.