
In that respect, tyre industry should continue to improve New Product Development (NPD) process to a different level by expanding R&D efforts. Consequently, innovative tyre technology and tyre knowledge will be extremely important to compete in the future, more than at any time in the past. As we all know, there are several key processes to design and to produce the right tyres to meet the customer requirements.
In the new tyre development process, duration is getting more crucial and all manufacturers are trying to shorten it by using modern simulation and modeling technics. TIC - Tyre Industry Consulting - and AccuPredict LLC believe in “Speed to market with right solutions and innovation.” In that respect, Virtual Technologies enable companies to launch world-class product faster and more cost effectively than ever. Therefore, we recommend using the Virtual technology which is essential to understand how all the various parts of the tyre interact and add up to whole. With modeling and simulation, you will foresee the full effects of cascading events as well as novel events that our mental models cannot even imagine.
Tyre, as a component of a vehicle, can largely influence the performance of the vehicle. On the other hand, to design tyres with high quality and high-performance, not only the characteristics of tyres such as tread pattern, tyre structure, material, local stress and thermal properties are also important, but the running conditions such as the load of a vehicle, the road roughness, temperature changes are equally critical. Considering the rapid advancement in electric vehicle, tyre will be the major source of noise for the modern vehicles. European regulation on tyre pass-by (PB) noise has been restricted to be less than 72 dB (A) and set the future noise level at a limit of 68 dB(A) after 2025 (phase 3). Tyre models based on virtual technology provide a comprehensive evaluation of key aspects of tyres. To ensure that the tyres are designed with high quality and good durability, and also in compliance with regulation, simulating tyres and predicting the tyre performance under various conditions can largely improve the tyre develop efficiency. The following tyre simulation and modeling are a few examples to showcase the vast potential of the tyre virtual technology.
- Components of tyre simulation - creation of rim, carcass, ply, and belts, reinforcement modeling, tread pattern meshing method, element types, etc.
- Footprint and force/moment prediction – Quasi-static footprint prediction with normal force, lateral force, torsion, and camber; steady-state rolling with brake and acceleration, cornering, and camber, etc.
- Integration of tyre structure and tyre Noise, Vibration and Harshness (NVH) – pitch sequencing, tyre profile and structure, tread blocks, void area, non-skid depth, angle of groove, shape of footprint, local stress distribution and tyre uniformity can be investigated in combination with tyre impact noise, air-pumping noise and cavity noise to obtain the tyre radiation noise model for tyre design optimisation.
- Rolling resistance – Deformation analysis, radial stiffness (R deflection) prediction, tread pattern and side wall stiffness may be included to a finite element model for specific tyre designs and then simulate the energy loss under different tyre running conditions to obtain the optimal rolling resistance level.
- Thermal stress and fatigue analysis based on fluid dynamics - fluid-solid coupling simulation, creation and evaluation of detailed tread design, and dynamic meshes for tyre structure and rotating machinery fields will collectively provide precise understanding of the thermal distribution of given tyres. In particular, the analysis can predict the thermal stress of tyre molds accurately.
We do recommend applying Virtual analysis in design and development phases regarding; sizing, carcass line design, pattern design, footprint, tyre structure, materials, running conditions, durability, rolling resistance, noise and others.
TIC-Tyre Industry Consulting and AccuPredict LLC Subject Matter Experts (SME) have vast hands on experiences for above topics and ready to support your activities. We provide specialised technical solutions for your challenges and we guarantee a high standard of professional-ethical principles that we have kept and developed for years.
In addition to those services, we also provide Simulation and Modeling Technical Courses that design to give your workforce the skills, mind set and competences. Our trainers guide participants through a learning journey featuring workshops, case studies and the latest educational technologies.
- www.ctyreindustry.com. Contact: halukkizilay@outlook.com
- www.accupredictllc.com. Contact junhan08@yahoo.com
Haluk Kizilay has built over 30 years an impressive career that spans everything from tyre design & development to strategic planning, marketing and business development with global leaders including Bridgestone Turkey and Cooper Tire & Rubber. In 2019, he established TIC (Tire Industry Consulting). Haluk is one of the authorised judges of EU Horizon 2020 work programme and one of the registered researchers of TUBITAK, the Scientific & Technological Research Council of Turkey. In this article he focuses how to enhance New Product Development (NPD) process.
…
Jun Han Ph.D. has more than 15 years of experience in solving mechanical problems related to structural sound and vibration, tyre NVH, Computational Fluid Dynamics (CFD), thermal, and numerical modelling. His exceptional modeling work won him the Outstanding Contribution to Innovation Award in 2019. He was a Senior Engineer at Cooper Tire & Rubber Company (OH) and has served as the core technical support for Cooper Tire’s Global R&D centers in the US, China and Europe. His work in reducing total tyre pass-by noise won him the prestigious Chairman’s Award at Copper in 2016. In 2020, Jun Han established his own technology company AccuPredict LLC
Fornnax Launches World’s Biggest Secondary Shredder
- By TT News
- October 17, 2025
Fornnax Technology Pvt Ltd has introduced the R-MAX3300, a new secondary shredder presented as the largest in its category. The official launch occurred on 14 October 2025 at the prominent IFAT India environmental technology exhibition in Mumbai. The unveiling ceremony was a significant industry event, attended by numerous leaders from the cement and waste management sectors. Key figures present included executives from GEPIL India, Zigma Global, Prism Johnson Ltd, Shree Cement Ltd and Mangalam Cement Ltd.
This shredder is positioned as a major technological advancement for India's recycling and waste processing infrastructure. It is designed to provide a powerful solution for Cement Alternative Fuel and Resource plants as well as waste-to-energy facilities. While the established R Series shredders are known for processing high-density materials such as tyres and cables, the R-MAX3300 is specifically engineered for low-density waste streams. These targeted materials include Municipal Solid Waste, Commercial and Industrial waste, Construction and Demolition debris, bulky items, legacy waste dumps and wood waste.
The machine integrates advanced shredding technology to efficiently produce Refuse Derived Fuel and Solid Recovered Fuel, achieving an optimal output particle size between 30 and 50 millimetres. Its construction emphasises durability, operational versatility and high performance to meet the demands of large-scale industrial applications requiring consistent fuel quality.
The R-MAX3300 is built for high-volume processing of pre-shredded or coarse materials. Its applications are expected to be crucial in producing solid recovered fuel, preparing waste for composting and reducing waste volume for more cost-effective transportation. The shredder is anticipated to be a key asset in Integrated Waste Management Projects and bio-mining operations across India and international markets.
Jignesh Kundaria, Director and CEO, Fornnax Technology, said, “The R-MAX3300 represents a monumental leap forward in our vision to become a global leader by 2030 in recycling technology through innovation. With the rising challenges of waste management in India and globally, this machine is not just a product; it’s a powerful tool for change. We engineered it to handle the most difficult waste streams with unparalleled efficiency, turning what was once considered unusable waste into a valuable resource. It directly addresses the urgent demand for effective, large-scale shredding technology that can support cement kilns and waste-to-energy facilities in achieving the desired output. Our commitment goes beyond just selling machinery; it's about empowering our customers to achieve lasting efficiency, sustainability and growth. We see ourselves as a trusted partner who stands beside them at every step – from technology deployment to ongoing support, ensuring they can rely on Fornnax not only for performance but also for consistency, dependability and long-term value.”
Siemens And rFpro Enhance Tyre-Road Simulation Technology
- By TT News
- October 05, 2025

A new collaborative development from rFpro and Siemens Digital Industries Software (Siemens) introduces a significant advancement in simulation technology. This innovation seamlessly connects Siemens' Simcenter Tire software with rFpro's TerrainServer platform, which creates highly precise, millimetre-accurate digital replicas of real-world road surfaces. Through this integration, the sophisticated MF-Tyre and MF-Swift models within Simcenter can directly access and process the detailed terrain data. This allows for the calculation of highly realistic tyre forces and moments, which is a critical factor for virtual testing in both the automotive and motorsport industries.
The partnership was built on ensuring the solution's reliability across diverse applications, from desktop engineering to cloud-based and real-time simulator environments. This development reinforces rFpro's commitment to an open and agnostic simulation platform, providing users with the flexibility to select their preferred models and tools. This strategy of integrating best-in-class third-party technologies protects customer investments and increases their return, as digital assets can be utilised across different departments with varying modelling requirements.
The combined power of TerrainServer's high-fidelity road models and Simcenter Tire's advanced modelling enables engineers to conduct in-depth evaluations of vehicle dynamics, including handling, ride quality and grip. Performance can be assessed objectively through data and subjectively using driver-in-the-loop simulators. This comprehensive approach allows for a more informed development process, leading to better-validated designs before physical prototypes are built, thereby saving substantial time and cost. The new interface is now commercially available and is already being widely adopted by OEMs and Tier 1 suppliers globally for programmes focused on ride comfort and vehicle dynamics.
Nick Harrison, Development Director, rFpro, said, “We aim to be the most open simulation environment on the market and this integration is another key example of this. Our platform-agnostic approach means engineers can pick and choose the best tools for the job. They have the ability to combine specialised technologies from different vendors to create the most effective simulation solution for their particular development challenge.”
Willem Versteden, Senior Technical Product Manager, Siemens Digital Industries Software, said, “Tyre behaviour depends heavily on the surface it’s interacting with. By integrating our Simcenter Tire software with rFpro’s TerrainServer, engineers can now simulate that interaction with a much higher level of detail. It’s a valuable step forward for users demanding greater accuracy in virtual vehicle development.”
- Continental
- nobilia
- Smart Kitchen
- Evolution of Senses
- AUMOVIO Engineering Solutions
- Surface Technology
Continental and nobilia Forge Future Of Living With Smart Kitchen Concept
- By TT News
- September 29, 2025

A groundbreaking collaboration between technology giant Continental and kitchen manufacturer nobilia is presenting a new vision for the kitchen, transforming it from a utilitarian space into an intelligent and responsive living environment. This joint innovation project, set to debut at nobilia’s international exhibition in Verl, harnesses the material science expertise of Continental’s ContiTech group, drawing directly from its advanced work in automotive interiors.
The concept, titled ‘Evolution of Senses’, showcases how functional materials can redefine everyday experiences through comfort, safety and seamless design. The core of this innovation lies in revolutionary translucent surfaces. These specialised materials are light-permeable and serve as a host for printed electronics, enabling an array of hidden functions. This technology allows a kitchen countertop to discreetly incorporate wireless smartphone charging, create specific heating or cooling zones to keep food and drinks at their ideal temperature and feature touch-sensitive control panels. All these elements remain completely invisible when not in use, preserving a clean aesthetic. This principle of surface technology is also demonstrated in a kitchen niche, where a screen is hidden behind a translucent film with a wood-like finish, only appearing when activated.
The commitment to modern living extends to sustainability, with the use of durable and resource-efficient materials. The chairs, for instance, are upholstered in an artificial leather that is composed of over 90 percent bio-based and renewable raw materials, including organically grown cotton.
Further enhancing the kitchen's intelligence are smart AI features, engineered by AUMOVIO Engineering Solutions. Adapted from Continental's automotive technology, these systems can recognise food items, offer recipe recommendations and provide nutritional insights. They also contribute to family safety by issuing alerts for potential hazards like boiling water or objects that might be dangerous for children.
While some of these technologies are production-ready and others are still in the prototype stage, they collectively offer a concrete and exciting preview of the future, where the home environment is both intuitively connected and sustainably crafted.
Ralf Imbery, Head of Design, Marketing and Strategy for Continental’s global surface materials business, said, “For many decades, our materials and technologies have shaped modern living spaces – from vehicle interiors to home furniture. With this concept kitchen, we’re showing how our expertise can be transferred to new requirements: for greater functionality, user-oriented design and technology in everyday life. For us, cooperation projects of this kind are an important strategic tool that allow us to test innovations at an early stage and, together with partners, develop new perspectives for future living environments.”
Florian Degenhardt, Head of Innovation, nobilia, said, “The collaboration with Continental is a real game-changer. It enables us to create intuitive surfaces that respond to the user while at the same time preserving the elegant design of modern kitchens.”
NASA Launches USD 155,000 Challenge for Revolutionary Lunar Rover Wheels
- By TT News
- September 09, 2025

NASA has launched a three-phase competition offering USD 155,000 in prizes to develop next-generation wheels for lunar rovers, as the US space agency prepares for sustained exploration missions to the Moon’s surface.
The “Rock and Roll with NASA Challenge” seeks lightweight, durable wheel designs capable of traversing the Moon’s harsh terrain of razor-sharp regolith whilst maintaining performance in extreme temperature variations and carrying substantial cargo loads at higher speeds.
The competition addresses critical mobility challenges facing future lunar missions, where traditional rover wheels have struggled with the Moon’s abrasive surface materials and temperature extremes that can plummet to minus 173 degrees Celsius during lunar nights.
“The next era of lunar exploration demands a new kind of wheel – one that can sprint across razor-sharp regolith, shrug off extremely cold nights, and keep a rover rolling day after lunar day,” NASA stated in announcing the challenge.
The programme unfolds across three distinct phases. Phase 1, which opened on 28 August and runs until 4 November 2025, will reward the best conceptual designs and analyses. Phase 2, scheduled for January through April 2026, will fund prototype development. The final phase in May-June 2026 will test leading designs through live obstacle courses simulating lunar conditions.
For the concluding phase, NASA will deploy MicroChariot, a 45-kilogram test rover, to evaluate top-performing wheel designs at the Johnson Space Centre Rockyard facility in Houston, Texas. The testing ground will simulate the challenging lunar terrain that future missions must navigate.
The competition remains open to diverse participants, from university student teams and independent inventors to established aerospace companies, reflecting NASA’s broader strategy of engaging private sector innovation for space exploration technologies.
NASA mobility engineers will provide ongoing feedback throughout the competition phases, offering participants insights from the agency’s extensive experience in planetary rover operations, including successful missions to Mars.
The challenge comes as NASA intensifies preparations for the Artemis programme, which aims to establish a sustained human presence on the Moon and serve as a stepping stone for eventual Mars exploration missions.
Current lunar rover designs have faced limitations in speed, cargo capacity, and durability when operating across the Moon’s challenging surface conditions, creating demand for breakthrough mobility solutions that can support extended surface operations.
The competition timeline positions Phase 2 prototype funding to commence in January 2026, allowing successful Phase 1 participants several months to refine their concepts before advancing to hardware development.
Comments (0)
ADD COMMENT